Einstein Master Equation — CST-Timed Self-Consistency Dashboard

Enter first-run parameters, press Run Simulation, and watch residuals, energy & validation update live.
First-Run Test Plan

Simulation Inputs & Tolerances

Idle — awaiting run
Tips: start with small kp, kd. Increase slowly after damping appears. Keep ε values realistic.
Equations

Master System & Control Law

Linearized Einstein equation
\[ \square\,\bar{h}_{\mu\nu} = -16\pi G\,S_{\mu\nu},\quad S_{\mu\nu}=\langle \hat T_{\mu\nu}\rangle + T_{\mu\nu}^{\text{class}} + F^{\text{CST}}_{\mu\nu} \] Quantum single-mode Lindblad
\[ \dot{\hat\rho} = -\frac{i}{\hbar}\left[\hbar\omega\big(1+\gamma\,\Phi[h]\big)a^\dagger a,\hat\rho\right] + \kappa \mathcal D[a]\hat\rho + \gamma_\phi \mathcal D[a^\dagger a]\hat\rho + \mathcal L_{\text{CST}} \]
CST feedback (PD)
\[ F^{\text{CST}}_{\mu\nu} = -k_p\,\Delta h_{\mu\nu} - k_d\,\Delta \dot h_{\mu\nu},\quad \Delta h_{\mu\nu} = h_{\mu\nu} - h^{\text{target}}_{\mu\nu}(t_{\text{CST}}) \]
Renormalized vacuum
\[ T_{\mu\nu}^{(\text{vac})} = \langle 0|\hat T_{\mu\nu}|0\rangle - \langle 0|\hat T_{\mu\nu}|0\rangle_{\text{flat}} \]
Fix Lorenz gauge & monitor constraints Avoid hidden energy injection Tune controller gradually
Run Log

Residuals vs. Time (Convergence)

Self-consistency: — Stability: — Physicality: —
Field Plots

hμν Snapshots & Spectral Content

Snapshot: pre-control

Snapshot: post-control

Spectrum: pre

Spectrum: post

Energy

Input Power vs. Curvature Change (Efficiency)

Efficiency: — Total power: —
Validation

Observable Checks (Pass/Fail)

TestTargetMeasuredStatus
Solar-system orbits (fractional err/orbit)< 1e-8
Cosmology (recover Friedmann in homogeneous limit)match
Lab EM cavity (Δf vs synthetic h)linear
Checkoff

Six Categories — Status

Geometry
Specify \(g_{\mu\nu}(x,t;\theta)\)
Source
Closed forms for \(T_{\mu\nu}^{\text{matter}},T_{\mu\nu}^{\text{EM}},T_{\mu\nu}^{\text{plasma}},T_{\mu\nu}^{\text{vac}}\)
Boundaries
Initial & asymptotic conditions
Computation
Tensor integrator / solver
Feedback
CST law \(F_{\mu\nu}=K_{\mu\nu}\Delta h_{\mu\nu}+D_{\mu\nu}\Delta\dot h_{\mu\nu}\)
Validation
Observable tests